Growth of Azospirillum irakense KBC1 on the aryl beta-glucoside salicin requires either salA or salB.
نویسندگان
چکیده
The rhizosphere nitrogen-fixing bacterium Azospirillum irakense KBC1 is able to grow on pectin and beta-glucosides such as cellobiose, arbutin, and salicin. Two adjacent genes, salA and salB, conferring beta-glucosidase activity to Escherichia coli, have been identified in a cosmid library of A. irakense DNA. The SalA and SalB enzymes preferentially hydrolyzed aryl beta-glucosides. A Delta(salA-salB) A. irakense mutant was not able to grow on salicin but could still utilize arbutin, cellobiose, and glucose for growth. This mutant could be complemented by either salA or salB, suggesting functional redundancy of these genes in salicin utilization. In contrast to this functional homology, the SalA and SalB proteins, members of family 3 of the glycosyl hydrolases, show a low degree of amino acid similarity. Unlike SalA, the SalB protein exhibits an atypical truncated C-terminal region. We propose that SalA and SalB are representatives of the AB and AB' subfamilies, respectively, in glycosyl hydrolase family 3. This is the first genetic implication of this beta-glucosidase family in the utilization of beta-glucosides for microbial growth.
منابع مشابه
An evolutionary alternative system for aryl beta-glucosides assimilation in bacteria.
Some bacteria of the soil microflora or of the digestive systems of mammals can grow on aryl beta-glucosides as sole carbon sources. The bgl operon of E. coli is the paradigm for such a catabolic pathway. In Azospirillum irakense, the two adjacent genes salAB encode beta-glucosidases which are required for salicin assimilation. In this report, we analyse the sequence of salC, the last gene to b...
متن کاملThe celA gene, encoding a glycosyl hydrolase family 3 beta-glucosidase in Azospirillum irakense, is required for optimal growth on cellobiosides.
The CelA beta-glucosidase of Azospirillum irakense, belonging to glycosyl hydrolase family 3 (GHF3), preferentially hydrolyzes cellobiose and releases glucose units from the C(3), C(4), and C(5) oligosaccharides. The growth of a DeltacelA mutant on these cellobiosides was affected. In A. irakense, the GHF3 beta-glucosidases appear to be functional alternatives for the GHF1 beta-glucosidases in ...
متن کاملPhase variation and genomic architecture changes in Azospirillum.
The plant growth-promoting rhizobacterium Azospirillum lipoferum 4B generates in vitro at high frequency a stable nonswimming phase variant designated 4V(I), which is distinguishable from the wild type by the differential absorption of dyes. The frequency of variants generated by a recA mutant of A. lipoferum 4B was increased up to 10-fold. The pleiotropic modifications characteristic of the ph...
متن کاملA fourth Escherichia coli gene system with the potential to evolve beta-glucoside utilization.
Escherichia coli K12 is being used to study the potential for adaptive evolution that is present in the genome of a single organism. Wild-type E. coli K12 do not utilize any of the beta-glucoside sugars arbutin, salicin or cellobiose. It has been shown that mutations at three cryptic loci allow utilization of these sugars. Mutations in the bgl operon allow inducible growth on arbutin and salici...
متن کاملDirected evolution of cellobiose utilization in Escherichia coli K12.
The cellobiose catabolic system of Escherichia coli K12 is being used to study the role of cryptic genes in evolution of new functions. Escherichia coli does not use beta-glucoside sugars; however, mutations in several loci can activate the cryptic bgl operon and permit growth on the beta-glucoside sugars arbutin and salicin. Such Bgl+ mutants do not use cellobiose, which is the most common bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 10 شماره
صفحات -
تاریخ انتشار 1999